Impact of variable air-sea O2 and CO2 fluxes on atmospheric potential oxygen (APO) and land-ocean carbon sink partitioning

نویسندگان

  • C. D. Nevison
  • N. M. Mahowald
  • S. C. Doney
  • I. D. Lima
چکیده

A three dimensional, time-evolving field of atmospheric potential oxygen (APO ∼O2/N2+CO2) was estimated using surface O2, N2 and CO2 fluxes from the WHOI ocean ecosystem model to force the MATCH atmospheric transport model. Land and fossil carbon fluxes were also run in MATCH and translated into O2 tracers using assumed O2:CO2 stoichiometries. The modeled seasonal cycles in APO agree well with the observed cycles at 13 global monitoring stations, with agreement helped by including oceanic CO2 in the APO calculation. The modeled latitudinal gradient in APO is strongly influenced by seasonal rectifier effects in atmospheric transport. An analysis of the APO-vs.-CO2 mass-balance method for partitioning land and ocean carbon sinks was performed in the controlled context of the MATCH simulation, in which the true surface carbon and oxygen fluxes were known exactly. This analysis suggests uncertainty of up to ±0.2 PgC in the inferred sinks due to variability associated with sparse atmospheric sampling. It also shows that interannual variability in oceanic O2 fluxes can cause large errors in the sink partitioning when the method is applied over short timescales. However, when decadal or longer averages are used, the variability in the oceanic O2 flux is relatively small, allowing carbon sinks to be partitioned to within a standard deviation of 0.1 Pg C/yr of the true values, provided one has an accurate estimate of longterm mean O2 outgassing. Correspondence to: C. D. Nevison ([email protected])

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interannual variability of air-sea O2 fluxes and the determination of CO2 sinks using atmospheric O2/N2

[1] Motivated by the use of atmospheric O2/N2 to determine CO2 sinks under the assumption of negligible interannual variability in air-sea O2 fluxes, we examine interannual fluctuations of the global air-sea flux of O2 during the period 1980 – 1998 using a global ocean circulation and biogeochemistry model along with an atmospheric transport model. It is found that both the El Niño/Southern Osc...

متن کامل

A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 2. Regional results

[1] We report here the results from a coupled ocean-atmosphere inversion, in which atmospheric CO2 gradients and transport simulations are combined with observations of ocean interior carbon concentrations and ocean transport simulations to provide a jointly constrained estimate of air-sea and air-land carbon fluxes. While atmospheric data have little impact on regional air-sea flux estimates, ...

متن کامل

A Sensitivity Analysis of the Impact of Rain on Regional and Global Sea-Air Fluxes of CO2

The global oceans are considered a major sink of atmospheric carbon dioxide (CO2). Rain is known to alter the physical and chemical conditions at the sea surface, and thus influence the transfer of CO2 between the ocean and atmosphere. It can influence gas exchange through enhanced gas transfer velocity, the direct export of carbon from the atmosphere to the ocean, by altering the sea skin temp...

متن کامل

Sea surface pCO2 and O2 in the Southern Ocean during the austral fall, 2008

[1] The physical and biological processes controlling surface mixed layer pCO2 and O2 were evaluated using in situ sensors mounted on a Lagrangian drifter deployed in the Atlantic sector of the Southern Ocean (∼50°S, ∼37°W) during the austral fall of 2008. The drifter was deployed three times during different phases of the study. The surface ocean pCO2 was always less than atmospheric pCO2 (−50...

متن کامل

A first estimate of present and preindustrial air-sea CO2 flux patterns based on ocean interior carbon measurements and models

[1] The exchange of CO2 across the air-sea interface is a main determinant of the distribution of atmospheric CO2 from which major conclusions about the carbon cycle are drawn, yet our knowledge of atmosphere-ocean fluxes still has major gaps. A new analysis based on recent ocean dissolved inorganic carbon data and on models permits us to separately estimate the preindustrial and present air-se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007